Solved

Graph the Function and Write the Domain and Range in Interval

Question 98

Multiple Choice

Graph the function and write the domain and range in interval notation.
- f(x) =(12) xf ( x ) = \left( \frac { 1 } { 2 } \right) ^ { x }


A)
 Graph the function and write the domain and range in interval notation. - f ( x )  = \left( \frac { 1 } { 2 } \right)  ^ { x }  A)    Domain:   (0, \infty)    Range:   (-\infty, \infty)     B)     Domain:  ( - \infty , \infty )   Range:  ( 0 , \infty )   C)    Domain:  ( 0 , \infty )   Range:  ( - \infty , \infty )   D)    Domain:  ( - \infty , \infty )   Range:  ( 0 , \infty )
Domain: (0,) (0, \infty)
Range: (,) (-\infty, \infty)

B)
 Graph the function and write the domain and range in interval notation. - f ( x )  = \left( \frac { 1 } { 2 } \right)  ^ { x }  A)    Domain:   (0, \infty)    Range:   (-\infty, \infty)     B)     Domain:  ( - \infty , \infty )   Range:  ( 0 , \infty )   C)    Domain:  ( 0 , \infty )   Range:  ( - \infty , \infty )   D)    Domain:  ( - \infty , \infty )   Range:  ( 0 , \infty )

Domain: (,) ( - \infty , \infty )
Range: (0,) ( 0 , \infty )
C)
 Graph the function and write the domain and range in interval notation. - f ( x )  = \left( \frac { 1 } { 2 } \right)  ^ { x }  A)    Domain:   (0, \infty)    Range:   (-\infty, \infty)     B)     Domain:  ( - \infty , \infty )   Range:  ( 0 , \infty )   C)    Domain:  ( 0 , \infty )   Range:  ( - \infty , \infty )   D)    Domain:  ( - \infty , \infty )   Range:  ( 0 , \infty )
Domain: (0,) ( 0 , \infty )
Range: (,) ( - \infty , \infty )
D)
 Graph the function and write the domain and range in interval notation. - f ( x )  = \left( \frac { 1 } { 2 } \right)  ^ { x }  A)    Domain:   (0, \infty)    Range:   (-\infty, \infty)     B)     Domain:  ( - \infty , \infty )   Range:  ( 0 , \infty )   C)    Domain:  ( 0 , \infty )   Range:  ( - \infty , \infty )   D)    Domain:  ( - \infty , \infty )   Range:  ( 0 , \infty )
Domain: (,) ( - \infty , \infty )
Range: (0,) ( 0 , \infty )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions