Solved

A Use Transformations to Graph the Function y=1+log5(x)y = 1 + \log _ { 5 } ( x )

Question 82

Multiple Choice

a. Use transformations to graph the function.
b. Write the domain and range in interval notation.
c. Determine the vertical asymptote.
- y=1+log5(x) y = 1 + \log _ { 5 } ( x )


A) a\mathrm { a } .
 a. Use transformations to graph the function. b. Write the domain and range in interval notation. c. Determine the vertical asymptote. - y = 1 + \log _ { 5 } ( x )   A)   \mathrm { a } .    b. domain:  ( 0 , \infty )  , range  ( - \infty , \infty )   c. vertical asymptote:  x = 0   B)   \mathrm { a } .   b. domain:  ( 1 , \infty )  , range  ( - \infty , \infty )   c. vertical asymptote:  x = 1   C)   \mathrm { a } .   b. domain:  ( 0 , \infty )  , range  ( - \infty , \infty )   c. vertical asymptote:  x = 0   D)   \mathrm { a } .   b. domain:  ( - 1 , \infty )  , range  ( - \infty , \infty )   c. vertical asymptote:  x = - 1

b. domain: (0,) ( 0 , \infty ) , range (,) ( - \infty , \infty )
c. vertical asymptote: x=0x = 0

B) a\mathrm { a } .
 a. Use transformations to graph the function. b. Write the domain and range in interval notation. c. Determine the vertical asymptote. - y = 1 + \log _ { 5 } ( x )   A)   \mathrm { a } .    b. domain:  ( 0 , \infty )  , range  ( - \infty , \infty )   c. vertical asymptote:  x = 0   B)   \mathrm { a } .   b. domain:  ( 1 , \infty )  , range  ( - \infty , \infty )   c. vertical asymptote:  x = 1   C)   \mathrm { a } .   b. domain:  ( 0 , \infty )  , range  ( - \infty , \infty )   c. vertical asymptote:  x = 0   D)   \mathrm { a } .   b. domain:  ( - 1 , \infty )  , range  ( - \infty , \infty )   c. vertical asymptote:  x = - 1
b. domain: (1,) ( 1 , \infty ) , range (,) ( - \infty , \infty )
c. vertical asymptote: x=1x = 1

C) a\mathrm { a } .
 a. Use transformations to graph the function. b. Write the domain and range in interval notation. c. Determine the vertical asymptote. - y = 1 + \log _ { 5 } ( x )   A)   \mathrm { a } .    b. domain:  ( 0 , \infty )  , range  ( - \infty , \infty )   c. vertical asymptote:  x = 0   B)   \mathrm { a } .   b. domain:  ( 1 , \infty )  , range  ( - \infty , \infty )   c. vertical asymptote:  x = 1   C)   \mathrm { a } .   b. domain:  ( 0 , \infty )  , range  ( - \infty , \infty )   c. vertical asymptote:  x = 0   D)   \mathrm { a } .   b. domain:  ( - 1 , \infty )  , range  ( - \infty , \infty )   c. vertical asymptote:  x = - 1
b. domain: (0,) ( 0 , \infty ) , range (,) ( - \infty , \infty )
c. vertical asymptote: x=0x = 0

D) a\mathrm { a } .
 a. Use transformations to graph the function. b. Write the domain and range in interval notation. c. Determine the vertical asymptote. - y = 1 + \log _ { 5 } ( x )   A)   \mathrm { a } .    b. domain:  ( 0 , \infty )  , range  ( - \infty , \infty )   c. vertical asymptote:  x = 0   B)   \mathrm { a } .   b. domain:  ( 1 , \infty )  , range  ( - \infty , \infty )   c. vertical asymptote:  x = 1   C)   \mathrm { a } .   b. domain:  ( 0 , \infty )  , range  ( - \infty , \infty )   c. vertical asymptote:  x = 0   D)   \mathrm { a } .   b. domain:  ( - 1 , \infty )  , range  ( - \infty , \infty )   c. vertical asymptote:  x = - 1
b. domain: (1,) ( - 1 , \infty ) , range (,) ( - \infty , \infty )
c. vertical asymptote: x=1x = - 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions