Solved

Write the Logarithm as a Sum or Difference of Logarithms ln[5x(x9+4)93+5x9]\ln \left[ \frac { 5 x \left( x ^ { 9 } + 4 \right) ^ { 9 } } { \sqrt [ 9 ] { 3 + 5 x } } \right]

Question 157

Multiple Choice

Write the logarithm as a sum or difference of logarithms. Simplify each term as much as possible.
- ln[5x(x9+4) 93+5x9]\ln \left[ \frac { 5 x \left( x ^ { 9 } + 4 \right) ^ { 9 } } { \sqrt [ 9 ] { 3 + 5 x } } \right]


A) ln5x+9ln(x9+419ln3+5x) \ln 5 x + 9 \ln \left( x ^ { 9 } + 4 - \frac { 1 } { 9 } \ln 3 + 5 x \right)
B) ln5+lnx+9ln(x9+4) 19ln(3+5x) \ln 5 + \ln x + 9 \ln \left( x ^ { 9 } + 4 \right) - \frac { 1 } { 9 } \ln ( 3 + 5 x )
C) ln5+lnx+81lnx+9ln419ln319ln519lnx\ln 5 + \ln x + 81 \ln x + 9 \ln 4 - \frac { 1 } { 9 } \ln 3 - \frac { 1 } { 9 } \ln 5 - \frac { 1 } { 9 } \ln x
D) ln5+lnx+729lnxln4181ln3ln5181ln3lnx\ln 5 + \ln x + 729 \ln x \cdot \ln 4 - \frac { 1 } { 81 } \ln 3 \cdot \ln 5 - \frac { 1 } { 81 } \ln 3 \cdot \ln x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions