Solved

Solve the Problem Monthly Cost (Jan (t=0( \mathrm { t } = 0

Question 196

Multiple Choice

Solve the problem.
-The monthly costs for a small company to do business has been increasing over time in part due to inflation. The table gives the monthly cost y (in $) for the month of January for selected years. The Variable t represents the number of years since 2008.
 Year (t=0 is 2008)   Monthly  Costs ($)  y014,000114,200214,400314,600\begin{array}{c|c}\begin{array}{c}\text { Year } \\(t=\mathbf{0} \text { is 2008) }\end{array} & \begin{array}{c}\text { Monthly } \\\text { Costs (\$) } y\end{array} \\\hline 0 & 14,000 \\1 & 14,200 \\2 & 14,400 \\3 & 14,600\end{array}

Monthly Cost (Jan.) for Selected Years

 Solve the problem. -The monthly costs for a small company to do business has been increasing over time in part due to inflation. The table gives the monthly cost y (in $)  for the month of January for selected years. The Variable t represents the number of years since 2008.   \begin{array}{c|c} \begin{array}{c} \text { Year } \\ (t=\mathbf{0} \text { is 2008)  } \end{array} & \begin{array}{c} \text { Monthly } \\ \text { Costs (\$)  } y \end{array} \\ \hline 0 & 14,000 \\ 1 & 14,200 \\ 2 & 14,400 \\ 3 & 14,600 \end{array}   Monthly Cost (Jan.)  for Selected Years     Year  ( \mathrm { t } = 0  represents  2008 )    a. Use a graphing utility to find a model of the form  y = a b ^ { t } . b. Write the function from part (a)  as an exponential function with base  e . c. Use the model to predict the monthly cost for January in the year 2,017 if this trend continues. Round to the nearest hundred dollars.  A)  a.  y = 14,001 ( 0.0140 )  ^ { t }  b.  y = 10 e ^ { 0.0140 t }  c.  \$ 91,900   B)  a.  y = 14,001 ( 1.014 )  ^ { t }  b.  y = 14,001 e ^ { 0.0140 t }  c.  \$ 15,900   C)  a.  y = 14,001 ( 1.014 )  ^ { t }  b.  y = 10 e ^ { 0.0140 t }  c.  \$ 15,900   D)  a.  y = 14,001 ( 1.014 )  ^ { t }  b.  y = 10 e ^ { 1.014 t }  c.  \$ 91,900

Year (t=0( \mathrm { t } = 0 represents 2008) 2008 )

a. Use a graphing utility to find a model of the form y=abty = a b ^ { t } .
b. Write the function from part (a) as an exponential function with base ee .
c. Use the model to predict the monthly cost for January in the year 2,017 if this trend continues. Round to the nearest hundred dollars.


A) a. y=14,001(0.0140) ty = 14,001 ( 0.0140 ) ^ { t }
b. y=10e0.0140ty = 10 e ^ { 0.0140 t }
c. $91,900\$ 91,900

B) a. y=14,001(1.014) ty = 14,001 ( 1.014 ) ^ { t }
b. y=14,001e0.0140ty = 14,001 e ^ { 0.0140 t }
c. $15,900\$ 15,900

C) a. y=14,001(1.014) ty = 14,001 ( 1.014 ) ^ { t }
b. y=10e0.0140ty = 10 e ^ { 0.0140 t }
c. $15,900\$ 15,900

D) a. y=14,001(1.014) ty = 14,001 ( 1.014 ) ^ { t }
b. y=10e1.014ty = 10 e ^ { 1.014 t }
c. $91,900\$ 91,900

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions