Solved

Solve the Problem f(x)=18(x1)4f ( x ) = - \frac { 1 } { 8 } ( x - 1 ) ^ { 4 }

Question 279

Multiple Choice

Solve the problem.
- f(x) =18(x1) 4f ( x ) = - \frac { 1 } { 8 } ( x - 1 ) ^ { 4 }
a. Identify the power function of the form y=xny = x ^ { n } that is the parent function to the given graph.
b. In order, outline the transformations that would be required on the graph of y=xny = x ^ { n } to make the graph of the given function.
c. Match the function with the graph.
i.
 Solve the problem. - f ( x )  = - \frac { 1 } { 8 } ( x - 1 )  ^ { 4 }  a. Identify the power function of the form  y = x ^ { n }  that is the parent function to the given graph. b. In order, outline the transformations that would be required on the graph of  y = x ^ { n }  to make the graph of the given function. c. Match the function with the graph. i.    ii.    iii.    iv.   A)  a.  y = x ^ { 4 }  b. Shift  y = x ^ { 4 }  to the right 1 units. Shrink vertically by a factor of  \frac { 1 } { 8 } . Reflect across the  x -axis. c. Graph iii. B)  a.  y = x ^ { 4 }  b. Shift  y = x ^ { 4 }  to the left 1 units. Shrink vertically by a factor of  \frac { 1 } { 4 } . Reflect across the  x -axis. c. Graph iii.  C)  a.  y = x ^ { 4 }  b. Shift  y = x ^ { 4 }  to the right 1 units. Shrink vertically by a factor of  \frac { 1 } { 8 } . Reflect across the  x -axis. c. Graph ii. D)  a.  y = x ^ { 4 }  b. Shift  y = x ^ { 4 }  to the left 1 units. Shrink vertically by a factor of  \frac { 1 } { 4 } . c. Graph i.

ii.
 Solve the problem. - f ( x )  = - \frac { 1 } { 8 } ( x - 1 )  ^ { 4 }  a. Identify the power function of the form  y = x ^ { n }  that is the parent function to the given graph. b. In order, outline the transformations that would be required on the graph of  y = x ^ { n }  to make the graph of the given function. c. Match the function with the graph. i.    ii.    iii.    iv.   A)  a.  y = x ^ { 4 }  b. Shift  y = x ^ { 4 }  to the right 1 units. Shrink vertically by a factor of  \frac { 1 } { 8 } . Reflect across the  x -axis. c. Graph iii. B)  a.  y = x ^ { 4 }  b. Shift  y = x ^ { 4 }  to the left 1 units. Shrink vertically by a factor of  \frac { 1 } { 4 } . Reflect across the  x -axis. c. Graph iii.  C)  a.  y = x ^ { 4 }  b. Shift  y = x ^ { 4 }  to the right 1 units. Shrink vertically by a factor of  \frac { 1 } { 8 } . Reflect across the  x -axis. c. Graph ii. D)  a.  y = x ^ { 4 }  b. Shift  y = x ^ { 4 }  to the left 1 units. Shrink vertically by a factor of  \frac { 1 } { 4 } . c. Graph i.

iii.
 Solve the problem. - f ( x )  = - \frac { 1 } { 8 } ( x - 1 )  ^ { 4 }  a. Identify the power function of the form  y = x ^ { n }  that is the parent function to the given graph. b. In order, outline the transformations that would be required on the graph of  y = x ^ { n }  to make the graph of the given function. c. Match the function with the graph. i.    ii.    iii.    iv.   A)  a.  y = x ^ { 4 }  b. Shift  y = x ^ { 4 }  to the right 1 units. Shrink vertically by a factor of  \frac { 1 } { 8 } . Reflect across the  x -axis. c. Graph iii. B)  a.  y = x ^ { 4 }  b. Shift  y = x ^ { 4 }  to the left 1 units. Shrink vertically by a factor of  \frac { 1 } { 4 } . Reflect across the  x -axis. c. Graph iii.  C)  a.  y = x ^ { 4 }  b. Shift  y = x ^ { 4 }  to the right 1 units. Shrink vertically by a factor of  \frac { 1 } { 8 } . Reflect across the  x -axis. c. Graph ii. D)  a.  y = x ^ { 4 }  b. Shift  y = x ^ { 4 }  to the left 1 units. Shrink vertically by a factor of  \frac { 1 } { 4 } . c. Graph i.

iv.
 Solve the problem. - f ( x )  = - \frac { 1 } { 8 } ( x - 1 )  ^ { 4 }  a. Identify the power function of the form  y = x ^ { n }  that is the parent function to the given graph. b. In order, outline the transformations that would be required on the graph of  y = x ^ { n }  to make the graph of the given function. c. Match the function with the graph. i.    ii.    iii.    iv.   A)  a.  y = x ^ { 4 }  b. Shift  y = x ^ { 4 }  to the right 1 units. Shrink vertically by a factor of  \frac { 1 } { 8 } . Reflect across the  x -axis. c. Graph iii. B)  a.  y = x ^ { 4 }  b. Shift  y = x ^ { 4 }  to the left 1 units. Shrink vertically by a factor of  \frac { 1 } { 4 } . Reflect across the  x -axis. c. Graph iii.  C)  a.  y = x ^ { 4 }  b. Shift  y = x ^ { 4 }  to the right 1 units. Shrink vertically by a factor of  \frac { 1 } { 8 } . Reflect across the  x -axis. c. Graph ii. D)  a.  y = x ^ { 4 }  b. Shift  y = x ^ { 4 }  to the left 1 units. Shrink vertically by a factor of  \frac { 1 } { 4 } . c. Graph i.


A) a. y=x4y = x ^ { 4 }
b. Shift y=x4y = x ^ { 4 } to the right 1 units. Shrink vertically by a factor of 18\frac { 1 } { 8 } . Reflect across the xx -axis.
c. Graph iii.
B) a. y=x4y = x ^ { 4 }
b. Shift y=x4y = x ^ { 4 } to the left 1 units. Shrink vertically by a factor of 14\frac { 1 } { 4 } . Reflect across the xx -axis.
c. Graph iii.
C) a. y=x4y = x ^ { 4 }
b. Shift y=x4y = x ^ { 4 } to the right 1 units. Shrink vertically by a factor of 18\frac { 1 } { 8 } . Reflect across the xx -axis.
c. Graph ii.
D) a. y=x4y = x ^ { 4 }
b. Shift y=x4y = x ^ { 4 } to the left 1 units. Shrink vertically by a factor of 14\frac { 1 } { 4 } .
c. Graph i.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions