Solved

A Identify the Horizontal Asymptote (If Any) f(x)=2x2+2x5x2+2f ( x ) = \frac { 2 x ^ { 2 } + 2 x - 5 } { x ^ { 2 } + 2 }

Question 127

Multiple Choice

a. Identify the horizontal asymptote (if any) .
b. If the graph of the function has a horizontal asymptote, determine the point where the graph crosses the
horizontal asymptote.
- f(x) =2x2+2x5x2+2f ( x ) = \frac { 2 x ^ { 2 } + 2 x - 5 } { x ^ { 2 } + 2 }


A) a. y=0y = 0
b. Graph does not cross y=0y = 0 .

B) a. y=0y = 0
b. (52,0) \left( - \frac { 5 } { 2 } , 0 \right)

C) a. y=2y = 2
b. (92,2) \left( \frac { 9 } { 2 } , 2 \right)

D) a. No horizontal asymptote
b. Not applicable

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions