Solved

Produce a Rule for the Function Whose Graph Is Shown m(x)={x2+3 for x<12 for x1m ( x ) = \left\{ \begin{array} { l l } x ^ { 2 } + 3 & \text { for } x < 1 \\ - 2 & \text { for } x \geq 1 \end{array} \right.

Question 202

Multiple Choice

Produce a rule for the function whose graph is shown.
- Produce a rule for the function whose graph is shown. -   A)   m ( x )  = \left\{ \begin{array} { l l } x ^ { 2 } + 3 & \text { for } x < 1 \\ - 2 & \text { for } x \geq 1 \end{array} \right.   B)   m ( x )  = \left\{ \begin{array} { l l } x ^ { 2 } - 3 & \text { for } x < 1 \\ - 2 & \text { for } x \geq 1 \end{array} \right.   C)   m ( x )  = \left\{ \begin{array} { l l } ( x + 3 )  ^ { 2 } & \text { for } x < 1 \\ - 2 & \text { for } x \geq 1 \end{array} \right.   D)   m ( x )  = \left\{ \begin{array} { l l } x ^ { 2 } - 3 & \text { for } x > 1 \\ - 2 & \text { for } x \leq 1 \end{array} \right.


A) m(x) ={x2+3 for x<12 for x1m ( x ) = \left\{ \begin{array} { l l } x ^ { 2 } + 3 & \text { for } x < 1 \\ - 2 & \text { for } x \geq 1 \end{array} \right.

B) m(x) ={x23 for x<12 for x1m ( x ) = \left\{ \begin{array} { l l } x ^ { 2 } - 3 & \text { for } x < 1 \\ - 2 & \text { for } x \geq 1 \end{array} \right.

C) m(x) ={(x+3) 2 for x<12 for x1m ( x ) = \left\{ \begin{array} { l l } ( x + 3 ) ^ { 2 } & \text { for } x < 1 \\ - 2 & \text { for } x \geq 1 \end{array} \right.

D) m(x) ={x23 for x>12 for x1m ( x ) = \left\{ \begin{array} { l l } x ^ { 2 } - 3 & \text { for } x > 1 \\ - 2 & \text { for } x \leq 1 \end{array} \right.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions