Solved

Solve the Compound Inequality 12x+33<4- 1 \leq \frac { 2 x + 3 } { 3 } < 4

Question 40

Multiple Choice

Solve the compound inequality. Graph the solution set, and write the solution set in interval notation.
- 12x+33<4- 1 \leq \frac { 2 x + 3 } { 3 } < 4


A) (,3](92,) ( - \infty , - 3 ] \cup \left( \frac { 9 } { 2 } , \infty \right)
 Solve the compound inequality. Graph the solution set, and write the solution set in interval notation. - - 1 \leq \frac { 2 x + 3 } { 3 } < 4  A)   ( - \infty , - 3 ] \cup \left( \frac { 9 } { 2 } , \infty \right)      B)   ( - \infty , - 3 )  \cup \left[ \frac { 9 } { 2 } , \infty \right]    C)   \left[ - 3 , \frac { 9 } { 2 } \right]     D)   \left[ - 3 , \frac { 9 } { 2 } \right]

B) (,3) [92,]( - \infty , - 3 ) \cup \left[ \frac { 9 } { 2 } , \infty \right]
 Solve the compound inequality. Graph the solution set, and write the solution set in interval notation. - - 1 \leq \frac { 2 x + 3 } { 3 } < 4  A)   ( - \infty , - 3 ] \cup \left( \frac { 9 } { 2 } , \infty \right)      B)   ( - \infty , - 3 )  \cup \left[ \frac { 9 } { 2 } , \infty \right]    C)   \left[ - 3 , \frac { 9 } { 2 } \right]     D)   \left[ - 3 , \frac { 9 } { 2 } \right]
C) [3,92]\left[ - 3 , \frac { 9 } { 2 } \right]
 Solve the compound inequality. Graph the solution set, and write the solution set in interval notation. - - 1 \leq \frac { 2 x + 3 } { 3 } < 4  A)   ( - \infty , - 3 ] \cup \left( \frac { 9 } { 2 } , \infty \right)      B)   ( - \infty , - 3 )  \cup \left[ \frac { 9 } { 2 } , \infty \right]    C)   \left[ - 3 , \frac { 9 } { 2 } \right]     D)   \left[ - 3 , \frac { 9 } { 2 } \right]

D) [3,92]\left[ - 3 , \frac { 9 } { 2 } \right]
 Solve the compound inequality. Graph the solution set, and write the solution set in interval notation. - - 1 \leq \frac { 2 x + 3 } { 3 } < 4  A)   ( - \infty , - 3 ] \cup \left( \frac { 9 } { 2 } , \infty \right)      B)   ( - \infty , - 3 )  \cup \left[ \frac { 9 } { 2 } , \infty \right]    C)   \left[ - 3 , \frac { 9 } { 2 } \right]     D)   \left[ - 3 , \frac { 9 } { 2 } \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions