Solved

Solve the Problem A=πrr2+h2A = \pi r \sqrt { r ^ { 2 } + h ^ { 2 } }

Question 125

Multiple Choice

Solve the problem.
-The lateral surface area A of a right circular cone is given by A=πrr2+h2A = \pi r \sqrt { r ^ { 2 } + h ^ { 2 } } , where r and h are the radius and height of the cone. Determine the exact value (in terms of ) of the lateral surface area of
A cone with radius 3 m and height 5 m. Then give a decimal approximation to the nearest square meter.  Solve the problem. -The lateral surface area A of a right circular cone is given by  A = \pi r \sqrt { r ^ { 2 } + h ^ { 2 } }  , where r and h are the radius and height of the cone. Determine the exact value (in terms of )  of the lateral surface area of A cone with radius 3 m and height 5 m. Then give a decimal approximation to the nearest square meter.    A)   6 \pi \sqrt { 2 } \mathrm {~m} ^ { 2 } \approx 27 \mathrm {~m} ^ { 2 }  B)   10 \pi \sqrt { 2 } \mathrm {~m} ^ { 2 } \approx 44 \mathrm {~m} ^ { 2 }  C)   5 \pi \sqrt { 34 } \mathrm {~m} ^ { 2 } \approx 92 \mathrm {~m} ^ { 2 }  D)   3 \pi \sqrt { 34 } \mathrm {~m} ^ { 2 } \approx 55 \mathrm {~m} ^ { 2 }


A) 6π2 m227 m26 \pi \sqrt { 2 } \mathrm {~m} ^ { 2 } \approx 27 \mathrm {~m} ^ { 2 }
B) 10π2 m244 m210 \pi \sqrt { 2 } \mathrm {~m} ^ { 2 } \approx 44 \mathrm {~m} ^ { 2 }
C) 5π34 m292 m25 \pi \sqrt { 34 } \mathrm {~m} ^ { 2 } \approx 92 \mathrm {~m} ^ { 2 }
D) 3π34 m255 m23 \pi \sqrt { 34 } \mathrm {~m} ^ { 2 } \approx 55 \mathrm {~m} ^ { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions