Solved

To Perform a Hypothesis Test of Two Population Proportions, the Pooled

Question 79

Multiple Choice

To perform a hypothesis test of two population proportions, the pooled estimate of pp must be determined. The pooled estimate, p^\hat { p } , is


A) p^=x1+x2n1+n2\hat { p } = \frac { x _ { 1 } + x _ { 2 } } { n _ { 1 } + n _ { 2 } }
B) p^=x1n1+x2n2\hat { \mathrm { p } } = \frac { \mathrm { x } _ { 1 } } { \mathrm { n } _ { 1 } } + \frac { \mathrm { x } _ { 2 } } { \mathrm { n } _ { 2 } }
C) p^=n2x1+n1×2n1+n2\hat { p } = \frac { n _ { 2 } x _ { 1 } + n _ { 1 \times 2 } } { n _ { 1 } + n _ { 2 } }
D) p^=x1+x2n1n2\hat { p } = \frac { x _ { 1 } + x _ { 2 } } { n _ { 1 } n _ { 2 } } 3 Construct and interpret confidence intervals for the difference between two population proportions.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions