Solved

To Construct a Confidence Interval for the Difference of Two 5%5 \%

Question 7

Multiple Choice

To construct a confidence interval for the difference of two population proportions the samples must be independently obtained random samples, both must consist of less than 5%5 \% of the population, and


A) both np1 (1p^1) 10( 1 - \hat { p } 1 ) \geq 10 and np2(1p^2) 10n \mathrm { p } 2 \left( 1 - \hat { p } _ { 2 } \right) \geq 10 must be true.
B) only one of np1^(1p^1) 10\hat { \mathrm { np } 1 } ( 1 - \hat { \mathrm { p } } 1 ) \geq 10 or np^2(1p^2) 10\hat { n p } _ { 2 } ( 1 - \hat { \mathrm { p } } 2 ) \geq 10 must be true,
C) np1^(1p^1) +np^2(1p^2) 20\hat { n p 1 } ( 1 - \hat { p } 1 ) + \hat { n p } _ { 2 } ( 1 - \hat { p } 2 ) \geq 20 .
D) np1(1p^1) np2(1p^2) 100\mathrm { np } 1 \left( 1 - \hat { p } _ { 1 } \right) \mathrm { np } 2 \left( 1 - \hat { p } _ { 2 } \right) \geq 100 . 4 Test hypotheses regarding two proportions from dependent samples.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions