Solved

Solve the Problem A) B)

C)

D)

Question 109

Multiple Choice

Solve the problem.
-A company makes three chocolate candies: cherry, almond, and raisin. Matrix A gives the amount Of ingredients in one batch. Matrix B gives the costs of ingredients from suppliers X and Y. Multiply the matrices.  sugar choc milk XYA=[461531331] cherry  almond  raisin B=[323422] sugar  choc  milk \begin{array} { c } \text { sugar choc milk } \quad\quad\quad\quad X\quad Y\\\\A = \left[ \begin{array} { l l l } 4 & 6 & 1 \\5 & 3 & 1 \\3 & 3 & 1\end{array} \right] \begin{array} { l } \text { cherry } \\\text { almond } \\\text { raisin }\end{array} \quad B = \left[ \begin{array} { l l } 3 & 2 \\3 & 4 \\2 & 2\end{array} \right] \begin{array} { l } \text { sugar } \\\text { choc } \\\text { milk }\end{array}\end{array}


A)
XYAB=[323426242020] cherry  almond  raisin \begin{array} { l } \quad\quad\quad\quad \mathrm { X }\quad\quad Y \\\mathrm { AB } = \left[ \begin{array} { l l } 32 & 34 \\26 & 24 \\20 & 20\end{array} \right] \begin{array} { l } \text { cherry } \\\text { almond } \\\text { raisin }\end{array} \\\end{array}
B)
 Solve the problem. -A company makes three chocolate candies: cherry, almond, and raisin. Matrix A gives the amount Of ingredients in one batch. Matrix B gives the costs of ingredients from suppliers X and Y. Multiply the matrices.  \begin{array} { c }  \text { sugar choc milk } \quad\quad\quad\quad X\quad Y\\\\ A = \left[ \begin{array} { l l l }  4 & 6 & 1 \\ 5 & 3 & 1 \\ 3 & 3 & 1 \end{array} \right] \begin{array} { l }  \text { cherry } \\ \text { almond } \\ \text { raisin } \end{array} \quad B = \left[ \begin{array} { l l }  3 & 2 \\ 3 & 4 \\ 2 & 2 \end{array} \right] \begin{array} { l }  \text { sugar } \\ \text { choc } \\ \text { milk } \end{array} \end{array}   A)    \begin{array} { l }   \quad\quad\quad\quad \mathrm { X }\quad\quad  Y \\ \mathrm { AB } = \left[ \begin{array} { l l }  32 & 34 \\ 26 & 24 \\ 20 & 20 \end{array} \right] \begin{array} { l }  \text { cherry } \\ \text { almond } \\ \text { raisin } \end{array} \\ \end{array}  B)     C)    D)
C)
 Solve the problem. -A company makes three chocolate candies: cherry, almond, and raisin. Matrix A gives the amount Of ingredients in one batch. Matrix B gives the costs of ingredients from suppliers X and Y. Multiply the matrices.  \begin{array} { c }  \text { sugar choc milk } \quad\quad\quad\quad X\quad Y\\\\ A = \left[ \begin{array} { l l l }  4 & 6 & 1 \\ 5 & 3 & 1 \\ 3 & 3 & 1 \end{array} \right] \begin{array} { l }  \text { cherry } \\ \text { almond } \\ \text { raisin } \end{array} \quad B = \left[ \begin{array} { l l }  3 & 2 \\ 3 & 4 \\ 2 & 2 \end{array} \right] \begin{array} { l }  \text { sugar } \\ \text { choc } \\ \text { milk } \end{array} \end{array}   A)    \begin{array} { l }   \quad\quad\quad\quad \mathrm { X }\quad\quad  Y \\ \mathrm { AB } = \left[ \begin{array} { l l }  32 & 34 \\ 26 & 24 \\ 20 & 20 \end{array} \right] \begin{array} { l }  \text { cherry } \\ \text { almond } \\ \text { raisin } \end{array} \\ \end{array}  B)     C)    D)
D)
 Solve the problem. -A company makes three chocolate candies: cherry, almond, and raisin. Matrix A gives the amount Of ingredients in one batch. Matrix B gives the costs of ingredients from suppliers X and Y. Multiply the matrices.  \begin{array} { c }  \text { sugar choc milk } \quad\quad\quad\quad X\quad Y\\\\ A = \left[ \begin{array} { l l l }  4 & 6 & 1 \\ 5 & 3 & 1 \\ 3 & 3 & 1 \end{array} \right] \begin{array} { l }  \text { cherry } \\ \text { almond } \\ \text { raisin } \end{array} \quad B = \left[ \begin{array} { l l }  3 & 2 \\ 3 & 4 \\ 2 & 2 \end{array} \right] \begin{array} { l }  \text { sugar } \\ \text { choc } \\ \text { milk } \end{array} \end{array}   A)    \begin{array} { l }   \quad\quad\quad\quad \mathrm { X }\quad\quad  Y \\ \mathrm { AB } = \left[ \begin{array} { l l }  32 & 34 \\ 26 & 24 \\ 20 & 20 \end{array} \right] \begin{array} { l }  \text { cherry } \\ \text { almond } \\ \text { raisin } \end{array} \\ \end{array}  B)     C)    D)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions