Solved

The Following System Does Not Have a Unique Solution {x+3y+2z=114y+9z=12\left\{ \begin{array} { r } x + 3 y + 2 z = 11 \\4 y + 9 z = - 12\end{array} \right.

Question 77

Multiple Choice

The following system does not have a unique solution. Solve the system.
- {x+3y+2z=114y+9z=12\left\{ \begin{array} { r } x + 3 y + 2 z = 11 \\4 y + 9 z = - 12\end{array} \right.


A) infinitely many solutions of the form x=20+194z,y=394z,z=zx = 20 + \frac { 19 } { 4 } z , y = - 3 - \frac { 9 } { 4 } z , z = z
B) infinitely many solutions of the form x=20194z,y=394z,z=z2x = 20 - \frac { 19 } { 4 } z , y = 3 - \frac { 9 } { 4 } z , z = z ^ { 2 }
C) infinitely many solutions of the form x=20+194z,y=394z,z=zx = 20 + \frac { 19 } { 4 } z , y = 3 - \frac { 9 } { 4 } z , z = z
D) infinitely many solutions of the form x=20+194z,y=3+94z,z=z2x = 20 + \frac { 19 } { 4 } z , y = 3 + \frac { 9 } { 4 } z , z = z ^ { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions