Solved

Either the Dimensions of Two Matrices or the Matrices Themselves A=[34];B=[36]A = \left[ \begin{array} { l l } 3 & 4\end{array} \right] ; B = \left[ \begin{array} { r } - 3 \\6\end{array} \right]

Question 19

Multiple Choice

Either the dimensions of two matrices or the matrices themselves are given. Find the dimensions of the product AB and
the product BA. If either is not defined, say so.
- A=[34];B=[36]A = \left[ \begin{array} { l l } 3 & 4\end{array} \right] ; B = \left[ \begin{array} { r } - 3 \\6\end{array} \right]


A) AB\mathrm { AB } is not defined; BA\mathrm { BA } is 2×22 \times 2 .
B) AB\mathrm { AB } is 1×11 \times 1 ; BA is 2×22 \times 2 .
C) AB\mathrm { AB } is 1×11 \times 1 ; BA\mathrm { BA } is not defined.
D) AB\mathrm { AB } is 2×22 \times 2 ; BA\mathrm { BA } is 1×11 \times 1 .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions