Solved

Find the Inverse of the Function f(x)=ex+2f ( x ) = e ^ { - x } + 2

Question 269

Multiple Choice

Find the inverse of the function.
- f(x) =ex+2f ( x ) = e ^ { - x } + 2


A) f1(x) =ex2f ^ { - 1 } ( x ) = - e ^ { x } - 2
B) f1(x) =ex1 s\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \mathrm { e } ^ { \mathrm { x } } - \frac { 1 } { \mathrm {~s} }
C) f1(x) =ln(x2) f ^ { - 1 } ( x ) = - \ln ( x - 2 )
D) f1(x) =ln2lnxf ^ { - 1 } ( x ) = \ln 2 - \ln x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions