Solved

A Balloon (In the Shape of a Sphere) Is Being (Vr)(t)\left( \mathrm { V } { } ^ { \circ } \mathrm { r } \right) ( \mathrm { t } )

Question 202

Multiple Choice

A balloon (in the shape of a sphere) is being inflated. The radius is increasing at a rate of 4 cm per second. Find a function, r(t) , for the radius in terms of t . Find a function, V(r) , for the volume of the balloon in terms of r . Find (Vr) (t) \left( \mathrm { V } { } ^ { \circ } \mathrm { r } \right) ( \mathrm { t } )


A) (Vr) (t) =320πt23( \mathrm { V } \cdot \mathrm { r } ) ( \mathrm { t } ) = \frac { 320 \pi \mathrm { t } ^ { 2 } } { 3 }
B) (Vr) (t) =112πt33\left( V { } ^ { \circ } r \right) ( t ) = \frac { 112 \pi t ^ { 3 } } { 3 }
C) (Vr) (t) =256πt33( \mathrm { V } \circ \mathrm { r } ) ( \mathrm { t } ) = \frac { 256 \pi t ^ { 3 } } { 3 }
D) (Vr) (t) =1024πt3( \mathrm { V } \circ \mathrm { r } ) ( \mathrm { t } ) = \frac { 1024 \pi \sqrt { \mathrm { t } } } { 3 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions