Solved

The Volume of a Cylinder Whose Height Is Equal to Twice

Question 253

Multiple Choice

The volume of a cylinder whose height is equal to twice its radius is f(x) =2πx3 cm3\mathrm { f } ( \mathrm { x } ) = 2 \pi \mathrm { x } ^ { 3 } \mathrm {~cm} ^ { 3 } , where x is the radius of the cylinder in cm . Find the inverse of this function.


A) f1(x) =2πx3f ^ { - 1 } ( x ) = 2 \pi \sqrt [ 3 ] { x }
B) f1(x) =12πx3f ^ { - 1 } ( x ) = \frac { 1 } { 2 \pi x ^ { 3 } }
C) f1(x) =x2π3f ^ { - 1 } ( x ) = \sqrt [ 3 ] { \frac { x } { 2 \pi } }
D) f1(x) =x32πf ^ { - 1 } ( x ) = \frac { \sqrt [ 3 ] { x } } { 2 \pi }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions