Solved

The Supply Function for a Product Is p(x)=13x2+50p ( x ) = \frac { 1 } { 3 } x ^ { 2 } + 50

Question 147

Multiple Choice

The supply function for a product is p(x) =13x2+50p ( x ) = \frac { 1 } { 3 } x ^ { 2 } + 50 where x is the number of thousands of units a manufacturer will supply if the price is p(x) dollars. Find the inverse of this function.


A) p1(x) =13x+50p ^ { - 1 } ( x ) = \frac { 1 } { 3 } \sqrt { x } + 50
B) p1(x) =3x50\mathrm { p } ^ { - 1 } ( \mathrm { x } ) = 3 \sqrt { \mathrm { x } } - 50
C) p1(x) =3(x50) \mathrm { p } ^ { - 1 } ( \mathrm { x } ) = 3 \sqrt { ( \mathrm { x } - 50 ) }
D) p1(x) =3(x50) p ^ { - 1 } ( x ) = \sqrt { 3 ( x - 50 ) }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions