Solved

Use the Gauss-Jordan Method to Solve the System of Equations 5x2y10=010x+y25=0\begin{array} { l } 5 x - 2 y - 10 = 0 \\10 x + y - 25 = 0\end{array}

Question 497

Multiple Choice

Use the Gauss-Jordan method to solve the system of equations. If the system has infinitely many solutions, give the
solution with y arbitrary.
- 5x2y10=010x+y25=0\begin{array} { l } 5 x - 2 y - 10 = 0 \\10 x + y - 25 = 0\end{array}


A) \varnothing
B) {{52y,y) }\left\{ \left\{ - \frac { 5 } { 2 } y , y \right) \right\}
C) {{125,1}}\left\{ \left\{ \frac { 12 } { 5 } , 1 \right\} \right\}
D) {{85,1) }\left\{ \left\{ \frac { 8 } { 5 } , - 1 \right) \right\}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions