Solved

Use the Gauss-Jordan Method to Solve the System of Equations xz=2y+z=10x+z=3\begin{array} { l } x - z = - 2 \\y + z = 10 \\x + z = 3\end{array}

Question 93

Multiple Choice

Use the Gauss-Jordan method to solve the system of equations. If the system has infinitely many solutions, let the last
variable be the arbitrary variable.
- xz=2y+z=10x+z=3\begin{array} { l } x - z = - 2 \\y + z = 10 \\x + z = 3\end{array}


A) {{52,112,92) }\left\{ \left\{ \frac { 5 } { 2 } , \frac { 11 } { 2 } , \frac { 9 } { 2 } \right) \right\}

B) {(12,152,52) }\left\{ \left( \frac { 1 } { 2 } , \frac { 15 } { 2 } , \frac { 5 } { 2 } \right) \right\}

C) {(2,10,0) }\{ ( - 2,10,0 ) \}

D) {(1,15,5) }\{ ( 1,15,5 ) \}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions