Solved

Use the Gauss-Jordan Method to Solve the System of Equations xy+2z+w=4y+z=4zw=3\begin{array} { l } x - y + 2 z + w = 4 \\y + z = 4 \\z - w = 3\end{array}

Question 144

Multiple Choice

Use the Gauss-Jordan method to solve the system of equations. If the system has infinitely many solutions, let the last
variable be the arbitrary variable.
- xy+2z+w=4y+z=4zw=3\begin{array} { l } x - y + 2 z + w = 4 \\y + z = 4 \\z - w = 3\end{array}


A) {(5,0,4,1) }\{ ( - 5,0,4,1 ) \}
B) {(1,1,3,w) }\{ ( - 1,1,3 , w ) \}
C) \varnothing
D) {(14w,1w,3+w,w) }\{ ( - 1 - 4 w , 1 - w , 3 + w , w ) \}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions