Solved

Use the Gauss-Jordan Method to Solve the System of Equations x+3y2zw=184x+y+z+2w=223xy3z2w=11xy3z2w=1\begin{array} { l } x + 3 y - 2 z - w = 18 \\4 x + y + z + 2 w = 22 \\- 3 x - y - 3 z - 2 w = - 11 \\x - y - 3 z - 2 w = 1\end{array}

Question 364

Multiple Choice

Use the Gauss-Jordan method to solve the system of equations. If the system has infinitely many solutions, let the last
variable be the arbitrary variable.
- x+3y2zw=184x+y+z+2w=223xy3z2w=11xy3z2w=1\begin{array} { l } x + 3 y - 2 z - w = 18 \\4 x + y + z + 2 w = 22 \\- 3 x - y - 3 z - 2 w = - 11 \\x - y - 3 z - 2 w = 1\end{array}


A) {(3,4,4,5) }\{ ( 3,4 , - 4,5 ) \}
B) {(3+w,42w,4+2w,w) }\{ ( 3 + w , 4 - 2 w , - 4 + 2 w , w ) \}
C) {(2,6,8,7) }\{ ( 2,6 , - 8,7 ) \}
D) {(18,22,11,1) }\{ ( 18,22 , - 11,1 ) \}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions