Solved

Perform the Indicated Operation ZZ Can Be Calculated Using the Equation 1Z=(1Z1+1Z2)\frac { 1 } { Z } = \left( \frac { 1 } { Z _ { 1 } } + \frac { 1 } { Z _ { 2 } } \right)

Question 410

Multiple Choice

Perform the indicated operation. Give answers in rectangular form expressing real and imaginary parts to four decimal
places.
-In a parallel electrical circuit, the impedance ZZ can be calculated using the equation
1Z=(1Z1+1Z2) \frac { 1 } { Z } = \left( \frac { 1 } { Z _ { 1 } } + \frac { 1 } { Z _ { 2 } } \right)
where Z1Z _ { 1 } and Z2Z _ { 2 } are the impedances for the branches of the circuit. The phase angle measures the phase difference between the voltage and the current in an electrical circuit. If the impedance Z\mathrm { Z } is expressed in the form a+bi\mathrm { a } + \mathrm { bi } , θ\theta can be determined by the equation tanθ=b/a\tan \theta = \mathrm { b } / \mathrm { a } . Determine the phase angle θ\theta (in degrees) for a parallel circuit in which Z1=10+20iZ _ { 1 } = 10 + 20 \mathrm { i } and Z2=30+10iZ _ { 2 } = 30 + 10 \mathrm { i } .


A) 6060 ^ { \circ }
B) 3030 ^ { \circ }
C) 00 ^ { \circ }
D) 4545 ^ { \circ }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions