Solved

Use a Table of Values to Graph the Plane Curve x=5tant,y=4sect, for t in [0,2π]x=5 \tan t, y=4 \sec t \text {, for } t \text { in }[0,2 \pi]

Question 42

Multiple Choice

Use a table of values to graph the plane curve defined by the following parametric equations. Find a rectangular equation
for the curve.
- x=5tant,y=4sect, for t in [0,2π]x=5 \tan t, y=4 \sec t \text {, for } t \text { in }[0,2 \pi]
 Use a table of values to graph the plane curve defined by the following parametric equations. Find a rectangular equation for the curve. - x=5 \tan t, y=4 \sec t \text {, for } t \text { in }[0,2 \pi]     A)     \frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 25 } = 1 , \text { for } x \text { in } ( - \infty , \infty )    B)     y = 4 \sqrt { 1 + \frac { x ^ { 2 } } { 25 } } , \text { for } x \text { in } ( - \infty , \infty )    C)     \frac { y ^ { 2 } } { 16 } + \frac { x ^ { 2 } } { 25 } = 1 , \text { for } x \text { in } ( - \infty , \infty )    D)     y = x ^ { 2 } - 9 , \text { for } x \text { in } [ - 3,3 ]


A)
 Use a table of values to graph the plane curve defined by the following parametric equations. Find a rectangular equation for the curve. - x=5 \tan t, y=4 \sec t \text {, for } t \text { in }[0,2 \pi]     A)     \frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 25 } = 1 , \text { for } x \text { in } ( - \infty , \infty )    B)     y = 4 \sqrt { 1 + \frac { x ^ { 2 } } { 25 } } , \text { for } x \text { in } ( - \infty , \infty )    C)     \frac { y ^ { 2 } } { 16 } + \frac { x ^ { 2 } } { 25 } = 1 , \text { for } x \text { in } ( - \infty , \infty )    D)     y = x ^ { 2 } - 9 , \text { for } x \text { in } [ - 3,3 ]
y216x225=1, for x in (,) \frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 25 } = 1 , \text { for } x \text { in } ( - \infty , \infty )

B)
 Use a table of values to graph the plane curve defined by the following parametric equations. Find a rectangular equation for the curve. - x=5 \tan t, y=4 \sec t \text {, for } t \text { in }[0,2 \pi]     A)     \frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 25 } = 1 , \text { for } x \text { in } ( - \infty , \infty )    B)     y = 4 \sqrt { 1 + \frac { x ^ { 2 } } { 25 } } , \text { for } x \text { in } ( - \infty , \infty )    C)     \frac { y ^ { 2 } } { 16 } + \frac { x ^ { 2 } } { 25 } = 1 , \text { for } x \text { in } ( - \infty , \infty )    D)     y = x ^ { 2 } - 9 , \text { for } x \text { in } [ - 3,3 ]
y=41+x225, for x in (,) y = 4 \sqrt { 1 + \frac { x ^ { 2 } } { 25 } } , \text { for } x \text { in } ( - \infty , \infty )

C)
 Use a table of values to graph the plane curve defined by the following parametric equations. Find a rectangular equation for the curve. - x=5 \tan t, y=4 \sec t \text {, for } t \text { in }[0,2 \pi]     A)     \frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 25 } = 1 , \text { for } x \text { in } ( - \infty , \infty )    B)     y = 4 \sqrt { 1 + \frac { x ^ { 2 } } { 25 } } , \text { for } x \text { in } ( - \infty , \infty )    C)     \frac { y ^ { 2 } } { 16 } + \frac { x ^ { 2 } } { 25 } = 1 , \text { for } x \text { in } ( - \infty , \infty )    D)     y = x ^ { 2 } - 9 , \text { for } x \text { in } [ - 3,3 ]
y216+x225=1, for x in (,) \frac { y ^ { 2 } } { 16 } + \frac { x ^ { 2 } } { 25 } = 1 , \text { for } x \text { in } ( - \infty , \infty )

D)
 Use a table of values to graph the plane curve defined by the following parametric equations. Find a rectangular equation for the curve. - x=5 \tan t, y=4 \sec t \text {, for } t \text { in }[0,2 \pi]     A)     \frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 25 } = 1 , \text { for } x \text { in } ( - \infty , \infty )    B)     y = 4 \sqrt { 1 + \frac { x ^ { 2 } } { 25 } } , \text { for } x \text { in } ( - \infty , \infty )    C)     \frac { y ^ { 2 } } { 16 } + \frac { x ^ { 2 } } { 25 } = 1 , \text { for } x \text { in } ( - \infty , \infty )    D)     y = x ^ { 2 } - 9 , \text { for } x \text { in } [ - 3,3 ]
y=x29, for x in [3,3]y = x ^ { 2 } - 9 , \text { for } x \text { in } [ - 3,3 ]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions