Solved

Verify That the Equation Is an Identity V1=120sin(220πt)\mathrm { V } _ { 1 } = 120 \sin ( 220 \pi \mathrm { t } )

Question 151

Multiple Choice

Verify that the equation is an identity.
-Two voltages, V1=120sin(220πt) \mathrm { V } _ { 1 } = 120 \sin ( 220 \pi \mathrm { t } ) and V2=90cos(220πt) \mathrm { V } _ { 2 } = 90 \cos ( 220 \pi \mathrm { t } ) , are added in a circuit to produce the sum V=V1+V2\mathrm { V } = \mathrm { V } _ { 1 } + \mathrm { V } _ { 2 } . Graph V\mathrm { V } in [0.02,0.02,0.002][ - 0.02,0.02,0.002 ] by [250,250,20][ - 250,250,20 ] and use the graph to estimate values for a and k\mathrm { k } so that V=asin(220πt+k) \mathrm { V } = \mathrm { a } \sin ( 220 \pi \mathrm { t } + \mathrm { k } ) . Round k\mathrm { k } to the nearest ten-thousandth, if necessary.


A) a=150;k=640.8999a = 150 ; k = 640.8999
B) a=15;k=0.6435\mathrm { a } = 15 ; \mathrm { k } = 0.6435
C) a=150;k=444.7557\mathrm { a } = 150 ; \mathrm { k } = 444.7557
D) a=150;k=0.6435\mathrm { a } = 150 ; \mathrm { k } = 0.6435

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions