Solved

Solve the Equation for Solutions Over the Interval [0 [0,2π)[ 0,2 \pi )

Question 206

Multiple Choice

Solve the equation for solutions over the interval [0, [0,2π) [ 0,2 \pi ) ) . Write solutions as exact values or to four decimal places, as
appropriate.
-A formula for the up-and-down motion of a weight on a spring is given by S=2sin(km) t\mathrm { S } = 2 \sin \left( \frac { \sqrt { \mathrm { k } } } { \mathrm { m } } \right) \mathrm { t } , where k\mathrm { k } is the spring constant, m\mathrm { m } is the mass, and t\mathrm { t } is the time. Solve the equation for t\mathrm { t } .


A) t=mkarcsin(s2) t = \frac { m } { \sqrt { k } } \arcsin \left( \frac { \mathrm { s } } { 2 } \right)
B) t=mksin(S2) t = \frac { m } { \sqrt { k } } \sin \left( \frac { S } { 2 } \right)
C) t=kmsin(2 S) t = \frac { \sqrt { \mathrm { k } } } { \mathrm { m } } \sin \left( \frac { 2 } { \mathrm {~S} } \right)
D) t=kmarcsin(s2) t = \frac { \sqrt { \mathrm { k } } } { \mathrm { m } } \arcsin \left( \frac { \mathrm { s } } { 2 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions