Solved

Graph the Function Over a One-Period Interval y=Asin((g/L)t+π/2)y = A \sin ( ( \sqrt { g / L } ) t + \pi / 2 )

Question 203

Multiple Choice

Graph the function over a one-period interval.
-A pendulum of length L, when displaced horizontally and released, oscillates with harmonic motion according to the equation y=Asin((g/L) t+π/2) y = A \sin ( ( \sqrt { g / L } ) t + \pi / 2 ) , where yy is the distance in meters from the rest position tt seconds after release, and g=9.8 m/sec2g = 9.8 \mathrm {~m} / \mathrm { sec } ^ { 2 } . Identify the period, amplitude, and phase shift when A=0.32 m\mathrm { A } = 0.32 \mathrm {~m} and L=0.39 m\mathrm { L } = 0.39 \mathrm {~m} . Round all answers to the nearest hundredth.


A) 1.26sec,0.32 m,0.311.26 \mathrm { sec } , 0.32 \mathrm {~m} , 0.31 units to the right
B) 0.63sec,0.32 m,0.630.63 \mathrm { sec } , 0.32 \mathrm {~m} , - 0.63 units to the left
C) 0.25sec,0.32 m,0.0630.25 \mathrm { sec } , 0.32 \mathrm {~m} , - 0.063 units to the left
D) 1.26sec,0.32 m,0.311.26 \mathrm { sec } , 0.32 \mathrm {~m} , - 0.31 units to the left

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions