Solved

The Function Graphed Is of the Form Y y=atanbx or y=acotbx, where b>0y = a \tan b x \text { or } y = a \cot b x , \text { where } b > 0 \text {. }

Question 12

Multiple Choice

The function graphed is of the form y y=atanbx or y=acotbx, where b>0y = a \tan b x \text { or } y = a \cot b x , \text { where } b > 0 \text {. } etermine the equation of the graph.
-The minimum length LL of a highway sag curve can be computed by
L=(θ2θ1) S2200( h+Stanα) \mathrm { L } = \frac { \left( \theta _ { 2 } - \theta _ { 1 } \right) \mathrm { S } ^ { 2 } } { 200 ( \mathrm {~h} + \mathrm { S } \tan \alpha ) ^ { \prime } }
where θ1\theta _ { 1 } is the downhill grade in degrees (θ1<0) ,θ2\left( \theta _ { 1 } < 0 ^ { \circ } \right) , \theta _ { 2 } is the uphill grade in degrees (θ2>0) ,S\left( \theta _ { 2 } > 0 ^ { \circ } \right) , \mathrm { S } is the safe stopping distance for a given speed limit, hh is the height of the headlights, and α\alpha is the alignment of the headlights in degrees. Compute L for a 55-mph speed limit, where h=2.4ft\mathrm { h } = 2.4 \mathrm { ft } , α=0.8,θ1=4,θ2=3\alpha = 0.8 ^ { \circ } , \theta _ { 1 } = - 4 ^ { \circ } , \theta _ { 2 } = 3 ^ { \circ } , and S=336ftS = 336 \mathrm { ft } . Round your answer to the nearest foot.


A) 543ft543 \mathrm { ft }
B) 557ft557 \mathrm { ft }
C) 588ft588 \mathrm { ft }
D) 572ft572 \mathrm { ft }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions