Solved

If the Function Is One-To-One, Find Its Inverse f(x)=4x+7f ( x ) = \frac { 4 } { x + 7 }

Question 168

Multiple Choice

If the function is one-to-one, find its inverse. If not, write "not one-to-one."
- f(x) =4x+7f ( x ) = \frac { 4 } { x + 7 }


A) f1(x) =7x+4xf ^ { - 1 } ( x ) = \frac { - 7 x + 4 } { x }
B) f1(x) =x7+4xf ^ { - 1 } ( x ) = \frac { x } { 7 + 4 x }
C) not a one-to-one
D) f1(x) =7+4xx\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \frac { 7 + 4 \mathrm { x } } { \mathrm { x } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions