Solved

Use the Properties of Logarithms to Rewrite the Expression loga(4x5y)\log _ { a } \left( 4 x ^ { 5 } y \right)

Question 177

Multiple Choice

Use the properties of logarithms to rewrite the expression. Simplify the result if possible. Assume all variables represent
positive real numbers.
- loga(4x5y) \log _ { a } \left( 4 x ^ { 5 } y \right)


A) loga4+(logax) 5+logay\log _ { a } 4 + \left( \log _ { a } x \right) ^ { 5 } + \log _ { a } y
B) loga4+5logax+logay\log _ { a } 4 + 5 \log _ { a } x + \log _ { a } y
C) (loga4) (logax) (logay) \left( \log _ { a } 4 \right) \left( \log _ { a } x \right) \left( \log _ { a } y \right)
D) loga(4+x5+y) \log _ { a } \left( 4 + x ^ { 5 } + y \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions