Solved

Use the Properties of Logarithms to Rewrite the Expression log4x5z3\log \sqrt { \frac { 4 x ^ { 5 } } { z ^ { 3 } } }

Question 32

Multiple Choice

Use the properties of logarithms to rewrite the expression. Simplify the result if possible. Assume all variables represent
positive real numbers.
- log4x5z3\log \sqrt { \frac { 4 x ^ { 5 } } { z ^ { 3 } } }


A) logb4+logbx5logbz3\sqrt { \log _ { b } 4 } + \sqrt { \log _ { b } x ^ { 5 } } - \sqrt { \log _ { b } z ^ { 3 } }
B) logb2+52logbx32logbz\log _ { b } 2 + \frac { 5 } { 2 } \log _ { b } x - \frac { 3 } { 2 } \log b z
C) logb252logbx32logbz\log _ { b } 2 \cdot \frac { 5 } { 2 } \log _ { b } x - \frac { 3 } { 2 } \log _ { b } z
D) (logb2++52logbx) ÷32logbz\left( \log _ { b } 2 + + \frac { 5 } { 2 } \log _ { b } x \right) \div \frac { 3 } { 2 } \log _ { b } z

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions