Solved

Give a Rule for the Piecewise-Defined Function B) f(x)={x3 if x<1x2 if x1f ( x ) = \left\{ \begin{array} { l l } - x ^ { 3 } & \text { if } x < 1 \\ x - 2 & \text { if } x \geq 1 \end{array} \right.

Question 34

Multiple Choice

Give a rule for the piecewise-defined function. Then give the domain and range.
- Give a rule for the piecewise-defined function. Then give the domain and range. -  A)   f ( x )  = \left\{ \begin{array} { l l } \sqrt [ 3 ] { x } & \text { if } x < 1 ; \text { Domain: } ( \infty , \infty )  , \text { Range: } ( \infty , 1 )  \cup [ 3 , \infty )  \\ x + 2 & \text { if } x \geq 1 \end{array} \right.  B)   f ( x )  = \left\{ \begin{array} { l l } - x ^ { 3 } & \text { if } x < 1 \\ x - 2 & \text { if } x \geq 1 \end{array} \right.  Domain:  ( \infty , 1 )  \cup [ 3 , \infty )  , Range:  ( \infty , \infty )   C)   f ( x )  = \left\{ \begin{array} { l l } x ^ { 3 } & \text { if } x < 1 \\ x + 2 & \text { if } x \geq 1 \end{array} \right.  Domain:  ( \infty , \infty )  , Range:  ( \infty , 1 )  \cup [ 3 , \infty )   D)   f ( x )  = \left\{ \begin{array} { l l } x ^ { 3 } & \text { if } x < 1 \\ x - 2 & \text { if } x \geq 1 \end{array} \right. ; Domain:  ( \infty , 1 )  \cup [ 3 , \infty )  , Range:  ( \infty , \infty )


A) f(x) ={x3 if x<1; Domain: (,) , Range: (,1) [3,) x+2 if x1f ( x ) = \left\{ \begin{array} { l l } \sqrt [ 3 ] { x } & \text { if } x < 1 ; \text { Domain: } ( \infty , \infty ) , \text { Range: } ( \infty , 1 ) \cup [ 3 , \infty ) \\ x + 2 & \text { if } x \geq 1 \end{array} \right.
B) f(x) ={x3 if x<1x2 if x1f ( x ) = \left\{ \begin{array} { l l } - x ^ { 3 } & \text { if } x < 1 \\ x - 2 & \text { if } x \geq 1 \end{array} \right. Domain: (,1) [3,) ( \infty , 1 ) \cup [ 3 , \infty ) , Range: (,) ( \infty , \infty )
C) f(x) ={x3 if x<1x+2 if x1f ( x ) = \left\{ \begin{array} { l l } x ^ { 3 } & \text { if } x < 1 \\ x + 2 & \text { if } x \geq 1 \end{array} \right. Domain: (,) ( \infty , \infty ) , Range: (,1) [3,) ( \infty , 1 ) \cup [ 3 , \infty )
D) f(x) ={x3 if x<1x2 if x1f ( x ) = \left\{ \begin{array} { l l } x ^ { 3 } & \text { if } x < 1 \\ x - 2 & \text { if } x \geq 1 \end{array} \right. ; Domain: (,1) [3,) ( \infty , 1 ) \cup [ 3 , \infty ) , Range: (,) ( \infty , \infty )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions