Solved

Consider the Function H as Defined h(x)=1x26h ( x ) = \frac { 1 } { x ^ { 2 } - 6 }

Question 513

Multiple Choice

Consider the function h as defined. Find functions f and g so that (f  g) (x) = h(x) .
- h(x) =1x26h ( x ) = \frac { 1 } { x ^ { 2 } - 6 }


A) f(x) =16,g(x) =x26f ( x ) = \frac { 1 } { 6 } , g ( x ) = x ^ { 2 } - 6
B) f(x) =1x2,g(x) =16f ( x ) = \frac { 1 } { x ^ { 2 } } , g ( x ) = - \frac { 1 } { 6 }
C) f(x) =1x,g(x) =x26f ( x ) = \frac { 1 } { x } , g ( x ) = x ^ { 2 } - 6
D) f(x) =1x2,g(x) =x6f ( x ) = \frac { 1 } { x ^ { 2 } } , g ( x ) = x - 6

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions