Solved

Use the Summation Properties to Evaluate the Series - i=13(3i2+4i5)\sum _ { i = 1 } ^ { 3 } \left( - 3 i ^ { 2 } + 4 i - 5 \right)

Question 203

Multiple Choice

Use the summation properties to evaluate the series. The following rules may be needed: i=1ni=n(n+1) 2;i=1ni2=n(n+1) (2n+1) 6;i=1ni3=n2(n+1) 24.\sum _ { i = 1 } ^ { n } i = \frac { n ( n + 1 ) } { 2 } ; \quad \sum _ { i = 1 } ^ { n } i ^ { 2 } = \frac { n ( n + 1 ) ( 2 n + 1 ) } { 6 } ; \quad \sum _ { i = 1 } ^ { n } i ^ { 3 } = \frac { n ^ { 2 } ( n + 1 ) ^ { 2 } } { 4 } .
- i=13(3i2+4i5) \sum _ { i = 1 } ^ { 3 } \left( - 3 i ^ { 2 } + 4 i - 5 \right)


A) - 23
B) - 3
C) 23
D) - 33

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions