Solved

Rationalize the Denominator 3xx3y\frac { 3 \sqrt { x } } { \sqrt { x } - 3 \sqrt { y } }

Question 542

Multiple Choice

Rationalize the denominator. Assume that all variables represent nonnegative numbers and that the denominator is not
zero.
- 3xx3y\frac { 3 \sqrt { x } } { \sqrt { x } - 3 \sqrt { y } }


A) 3x(x+3y) x9y\frac { 3 \sqrt { x } ( \sqrt { x } + 3 \sqrt { y } ) } { x - 9 y }

B) 3x(x+3y) x3y\frac { 3 \sqrt { x } ( \sqrt { x } + 3 \sqrt { y } ) } { x - 3 y }

C) 3x(x+3y) x+3y\frac { 3 \sqrt { x } ( \sqrt { x } + 3 \sqrt { y } ) } { x + 3 y }

D) 3x(x3y) x+9y\frac { 3 \sqrt { x } ( \sqrt { x } - 3 \sqrt { y } ) } { x + 9 y }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions