Solved

A Multiple-Comparison Procedure for Comparing Four Treatment Means Produced the Confidence

Question 75

Multiple Choice

A multiple-comparison procedure for comparing four treatment means produced the confidence intervals shown below. For each pair of means, indicate which mean is larger or indicate that thereis no significant difference.

(μAμB) :(17,35) (μAμC) :(7,23) (μAμD) :(2,22) (μBμC) :(17,5) (μBμD) :(21,7) (μCμD) :(10,4) \begin{array}{l}\left(\mu_{\mathrm{A}}-\mu_{\mathrm{B}}\right) :(17,35) \\\left(\mu_{\mathrm{A}}-\mu_{\mathrm{C}}\right) :(7,23) \\\left(\mu_{\mathrm{A}}-\mu_{\mathrm{D}}\right) :(2,22) \\\left(\mu_{\mathrm{B}}-\mu_{\mathrm{C}}\right) :(-17,-5) \\\left(\mu_{\mathrm{B}}-\mu_{\mathrm{D}}\right) :(-21,-7) \\\left(\mu_{\mathrm{C}}-\mu_{\mathrm{D}}\right) :(-10,4) \end{array}


A) Gn>On?Gn>gnOn>gn?Gn<Vn.On<Vn?Gn<Vn\mathrm{Gn}>\mathrm{On} ? \mathrm{Gn}>\mathrm{gn} \subseteq \mathrm{On}>\mathrm{gn} ? \mathrm{Gn}<\mathrm{Vn} . \mathrm{On}<\mathrm{Vn} ? \mathrm{Gn}<\mathrm{Vn}

B) μA>μB;μA>μC;μA>μD;μB<μC;μB<μD; no significant difference between μC and μD\mu_{\mathrm{A}}>\mu_{\mathrm{B}} ; \mu_{\mathrm{A}}>\mu_{\mathrm{C}} ; \mu_{\mathrm{A}}>\mu_{\mathrm{D}} ; \mu_{\mathrm{B}}<\mu_{\mathrm{C}} ; \mu_{\mathrm{B}}<\mu_{\mathrm{D}} ; \text { no significant difference between } \mu_{\mathrm{C}} \text { and } \mu_{\mathrm{D}}

C) μA<μB;μA<μC;μA<μD;μB>μC;μB>μD; no significant difference between μC and μD\mu_{\mathrm{A}}<\mu_{\mathrm{B}} ; \mu_{\mathrm{A}}<\mu_{\mathrm{C}} ; \mu_{\mathrm{A}}<\mu_{\mathrm{D}} ; \mu_{\mathrm{B}}>\mu_{\mathrm{C}} ; \mu_{\mathrm{B}}>\mu_{\mathrm{D}} \text {; no significant difference between } \mu_{\mathrm{C}} \text { and } \mu_{\mathrm{D}}

D) no significant difference between μA \mu_{\mathrm{A}} and μB;μA<μC;μA<μD;μB>μC;μB>μD \mu_{\mathrm{B}} ; \mu_{\mathrm{A}}<\mu_{\mathrm{C}} ; \mu_{\mathrm{A}}<\mu_{\mathrm{D}} ; \mu_{\mathrm{B}}>\mu_{\mathrm{C}} ; \mu_{\mathrm{B}}>\mu_{\mathrm{D}} ; no significant difference between μC \mu_{C} and μD \mu_{D}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions