Solved

Find the Center, Transverse Axis, Vertices, Foci, and Asymptotes of the Hyperbola

Question 187

Multiple Choice

Find the center, transverse axis, vertices, foci, and asymptotes of the hyperbola.
- x236y24=1\frac { x ^ { 2 } } { 36 } - \frac { y ^ { 2 } } { 4 } = 1


A) center at (0,0) (0,0)
transverse axis is x \mathrm{x} -axis
vertices at (11,0) (-11,0) and (11,0) (11,0)
foci at (137,0) (-\sqrt{137}, 0) and (137,0) (\sqrt{137}, 0)
asymptotes of y=114 y=-\frac{11}{4} and y=114 y=\frac{11}{4}


B) center at (0,0) (0,0)
transverse axis is y \mathrm{y} -axis
vertices at (0,4) (0,-4) and (0,4) (0,4)
foci at (137,0) (-\sqrt{137}, 0) and (137,0) (\sqrt{137}, 0)
asymptotes of y=114 y=-\frac{11}{4} and y=114 y=\frac{11}{4}


C)  center at (0,0)  transverse axis is x-axis  vertices at (4,0)  and (4,0)  foci at (11,0)  and (11,0)  asymptotes of y=114 and y=114\begin{array}{l}\text { center at }(0,0) \\\text { transverse axis is } x \text {-axis } \\\text { vertices at }(-4,0) \text { and }(4,0) \\\text { foci at }(-11,0) \text { and }(11,0) \\\text { asymptotes of } y=-\frac{11}{4} \text { and } y=\frac{11}{4}\end{array}


D)  center at (0,0)  transverse axis is x-axis  vertices at (4,0)  and (4,0)  foci at (137,0)  and (137,0)  asymptotes of y=114 and y=114\begin{array}{l}\text { center at }(0,0) \\\text { transverse axis is x-axis } \\\text { vertices at }(-4,0) \text { and }(4,0) \\\text { foci at }(-\sqrt{137}, 0) \text { and }(\sqrt{137}, 0) \\\text { asymptotes of } y=-\frac{11}{4} \text { and } y=\frac{11}{4}\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions