Solved

Find the Center, Transverse Axis, Vertices, Foci, and Asymptotes of the Hyperbola

Question 151

Multiple Choice

Find the center, transverse axis, vertices, foci, and asymptotes of the hyperbola.
- (x3) 29(y+3) 2=9( x - 3 ) ^ { 2 } - 9 ( y + 3 ) ^ { 2 } = 9


A) center at (3,3) ( 3 , - 3 )
transverse axis is parallel to y\mathrm { y } -axis
vertices at (3,6) ( 3 , - 6 ) and (3,0) ( 3,0 ) ,
foci at (3,310) ( 3 , - 3 - \sqrt { 10 } ) and (3,3+10) ( 3 , - 3 + \sqrt { 10 } ) ,
asymptotes of y3=3(x+3) y - 3 = - 3 ( x + 3 ) and y3=3(x+3) y - 3 = 3 ( x + 3 )

B) center at (3,3) ( 3 , - 3 )
transverse axis is parallel to xx -axis
vertices at (0,3) ( 0 , - 3 ) and (6,3) ( 6 , - 3 )
foci at (310,3) ( 3 - \sqrt { 10 } , - 3 ) and (3+10,3) ( 3 + \sqrt { 10 } , - 3 )
asymptotes of y+3=13(x3) y + 3 = - \frac { 1 } { 3 } ( x - 3 ) and y+3=13(x3) y + 3 = \frac { 1 } { 3 } ( x - 3 )

C) center at (3,3) ( - 3,3 )
transverse axis is parallel to xx -axis
vertices at (6,3) ( - 6,3 ) and (0,3) ( 0,3 )
foci at (310,3) ( - 3 - \sqrt { 10 } , 3 ) and (3+10,3) ( - 3 + \sqrt { 10 } , 3 )
asymptotes of y3=13(x+3) y - 3 = - \frac { 1 } { 3 } ( x + 3 ) and y3=13(x+3) y - 3 = \frac { 1 } { 3 } ( x + 3 )

D) center at (3,3) ( 3 , - 3 )
transverse axis is parallel to xx -axis
vertices at (2,3) ( 2 , - 3 ) and (4,3) ( 4 , - 3 )
foci at (310,3) ( 3 - \sqrt { 10 } , - 3 ) and (3+10,3) ( 3 + \sqrt { 10 } , - 3 )
asymptotes of y+3=3(x3) y + 3 = - 3 ( x - 3 ) and y+3=3(x3) y + 3 = 3 ( x - 3 )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions