Solved

Solve the Problem (0,4)( 0,4 ) And Then Moves Closer and Closer to the Line

Question 74

Multiple Choice

Solve the problem.
-A satellite following the hyperbolic path shown in the picture turns rapidly at (0,4) ( 0,4 ) and then moves closer and closer to the line y=85xy = \frac { 8 } { 5 } x as it gets farther from the tracking station at the origin. Find the equation that describes the path of the rocket if the center of the hyperbola is at (0,0) ( 0,0 ) .
 Solve the problem. -A satellite following the hyperbolic path shown in the picture turns rapidly at  ( 0,4 )   and then moves closer and closer to the line  y = \frac { 8 } { 5 } x  as it gets farther from the tracking station at the origin. Find the equation that describes the path of the rocket if the center of the hyperbola is at  ( 0,0 )  .    A)   \frac { y ^ { 2 } } { \frac { 25 } { 4 } } - \frac { x ^ { 2 } } { 16 } = 1  B)   \frac { x ^ { 2 } } { \left( \frac { 12 } { 5 } \right)  ^ { 2 } } - \frac { y ^ { 2 } } { 9 } = 1  C)   \frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { \left( \frac { 16 } { 5 } \right)  ^ { 2 } } = 1  D)   \frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { \frac { 25 } { 4 } } = 1


A) y2254x216=1\frac { y ^ { 2 } } { \frac { 25 } { 4 } } - \frac { x ^ { 2 } } { 16 } = 1
B) x2(125) 2y29=1\frac { x ^ { 2 } } { \left( \frac { 12 } { 5 } \right) ^ { 2 } } - \frac { y ^ { 2 } } { 9 } = 1
C) x216y2(165) 2=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { \left( \frac { 16 } { 5 } \right) ^ { 2 } } = 1
D) y216x2254=1\frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { \frac { 25 } { 4 } } = 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions