Solved

Rotate the Axes So That the New Equation Contains No 24xy7y2+36=024 x y - 7 y ^ { 2 } + 36 = 0

Question 170

Multiple Choice

Rotate the axes so that the new equation contains no xy-term. Discuss the new equation.
- 24xy7y2+36=024 x y - 7 y ^ { 2 } + 36 = 0


A) θ=36.9y29x216=1\begin{array}{l}\theta=36.9^{\circ} \\\frac{y^{\prime 2}}{9}-\frac{x^{\prime 2}}{16}=1\end{array}
hyperbola
center at (0,0) (0,0)
transverse axis is the y y^{\prime} -axis
vertices at (0,±3) (0, \pm 3)

B) θ=36.94y29x24=1\begin{array}{l}\theta=36.9^{\circ} \\\frac{4 y^{\prime 2}}{9}-\frac{x^{\prime 2}}{4}=1\end{array}
hyperbola
center at (0,0) (0,0)
transverse axis is the y y^{\prime} -axis
vertices at (0,±32) \left(0, \pm \frac{3}{2}\right)

C) θ=36.9y244x29=1\begin{array}{l}\theta=36.9^{\circ} \\\frac{y^{\prime 2}}{4}-\frac{4 x^{2}}{9}=1\end{array}
hyperbola
center at (0,0) (0,0)
transverse axis is the y y^{\prime} -axis
vertices at (0,±2) (0, \pm 2)

D) θ=53.1y244x29=1\begin{array}{l}\theta=53.1^{\circ} \\\frac{y^{\prime 2}}{4}-\frac{4 x^{\prime 2}}{9}=1\end{array}
hyperbola
center at (0,0) (0,0)
transverse axis is the y y^{\prime} -axis
vertices at (0,±2) (0, \pm 2)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions