Solved

Rotate the Axes So That the New Equation Contains No 31x2+103xy+21y2144=031 x^{2}+10 \sqrt{3} x y+21 y^{2}-144=0

Question 40

Multiple Choice

Rotate the axes so that the new equation contains no xy-term. Discuss the new equation.
- 31x2+103xy+21y2144=031 x^{2}+10 \sqrt{3} x y+21 y^{2}-144=0


A)
θ=45x2=42y\begin{array}{l}\theta=45^{\circ} \\x^{\prime 2}=-4 \sqrt{2} y^{\prime}\end{array}
parabola
vertex at (0,0) (0,0)
focus at (0,2) (0,-\sqrt{2})

B)
θ=36.9x29+y24=1 ellipse  center at (0,0)  major axis is x-axis  vertices at (±3.0) \begin{array}{l}\theta=36.9^{\circ} \\\frac{x^{2}}{9}+\frac{y^{\prime 2}}{4}=1 \\\text { ellipse } \\\text { center at }(0,0) \\\text { major axis is } x^{\prime} \text {-axis } \\\text { vertices at }(\pm 3.0) \end{array}

C)
θ=300x24+y+29=1\begin{array}{l}\theta=30^{0} \\\frac{x^{2}}{4}+\frac{y^{+2}}{9}=1\end{array}
ellipse
center at (0,0) (0,0)
major axis is y y^{\prime} -axi:
vertices at (0,±3) (0, \pm 3)

D)
θ=45y2=42x parabola  vertex at (0,0)  focus at (2,0) \begin{array}{l}\theta=45^{\circ} \\y^{\prime 2}=-4 \sqrt{2} x^{\prime} \\\text { parabola } \\\text { vertex at }(0,0) \\\text { focus at }(-\sqrt{2}, 0) \end{array}


Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions