Solved

Rotate the Axes So That the New Equation Contains No x2+xy+y23y6=0x ^ { 2 } + x y + y ^ { 2 } - 3 y - 6 = 0

Question 100

Multiple Choice

Rotate the axes so that the new equation contains no xy-term. Discuss the new equation.
- x2+xy+y23y6=0x ^ { 2 } + x y + y ^ { 2 } - 3 y - 6 = 0


A)
θ=45y2=18x parabola  vertex at (0,0)  focus at (92,0) \begin{array}{l}\theta=45^{\circ} \\y^{\prime 2}=-18 x^{\prime} \\\text { parabola } \\\text { vertex at }(0,0) \\\text { focus at }\left(-\frac{9}{2}, 0\right) \end{array}

B)
θ=45(x22) 2+(y322) 215=1\frac{\theta=45^{\circ}}{\left(x^{\prime}-\frac{\sqrt{2}}{2}\right) ^{2}}+\frac{\left(y^{\prime}-\frac{3 \sqrt{2}}{2}\right) ^{2}}{15}=1
ellipse center at (22,322) \left(\frac{\sqrt{2}}{2}, \frac{3 \sqrt{2}}{2}\right)
major axis is y y^{\prime} -axis vertices at (22,322) \left(\frac{\sqrt{2}}{2},-\frac{3 \sqrt{2}}{2}\right) and (22,922) \left(\frac{\sqrt{2}}{2}, \frac{9 \sqrt{2}}{2}\right)

C) θ=45\theta=45^{\circ}
x26y28=1\frac{x^{\prime 2}}{6}-\frac{y^{\prime 2}}{8}=1
hyperbola
center at (0,0) (0,0)
transverse axis is the x \mathrm{x}^{\prime} -axis
vertices at (±6,0) (\pm \sqrt{6}, 0)

D) θ=45x23+y24=1\begin{array}{l}\theta=45^{\circ} \\\frac{x^{\prime 2}}{3}+\frac{y^{2}}{4}=1\end{array}
ellipse
center at (0,0) (0,0)
major axis is y y^{\prime} -axis
vertices at (0,±2) (0, \pm 2)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions