Solved

Rotate the Axes So That the New Equation Contains No 17x212xy+8y268x+24y12=017 x ^ { 2 } - 12 x y + 8 y ^ { 2 } - 68 x + 24 y - 12 = 0

Question 15

Multiple Choice

Rotate the axes so that the new equation contains no xy-term. Discuss the new equation.
- 17x212xy+8y268x+24y12=017 x ^ { 2 } - 12 x y + 8 y ^ { 2 } - 68 x + 24 y - 12 = 0


A) θ=26.6\theta = 26.6 ^ { \circ }
x24+y216=1\frac { x ^ { \prime 2 } } { 4 } + \frac { y ^ { \prime 2 } } { 16 } = 1
ellipse
center at (0,0) ( 0,0 )
major axis is yy ^ { \prime } - axis
vertices at (0,±4) ( 0 , \pm 4 )
B) θ=63.4\theta = 63.4 ^ { \circ }
(x255) 216+(y+455) 24=1\frac { \left( x ^ { \prime } - \frac { 2 \sqrt { 5 } } { 5 } \right) ^ { 2 } } { 16 } + \frac { \left( y ^ { \prime } + \frac { 4 \sqrt { 5 } } { 5 } \right) ^ { 2 } } { 4 } = 1
ellipse
center at (255,455) \left( \frac { 2 \sqrt { 5 } } { 5 } , - \frac { 4 \sqrt { 5 } } { 5 } \right)
major axis is xx ^ { \prime } -axis
vertices at (4+255,455) \left( 4 + \frac { 2 \sqrt { 5 } } { 5 } , - \frac { 4 \sqrt { 5 } } { 5 } \right) and (4+255,455) \left( - 4 + \frac { 2 \sqrt { 5 } } { 5 } , - \frac { 4 \sqrt { 5 } } { 5 } \right)
C) θ=63.4\theta = 63.4 ^ { \circ }
x2=16yx ^ { \prime 2 } = - 16 y ^ { \prime }
parabola
vertex at (0,0) ( 0,0 )
focus at (0,4) ( 0 , - 4 )
D) θ=63.4\theta = 63.4 ^ { \circ }
x216y24=1\frac { x ^ { \prime 2 } } { 16 } - \frac { y ^ { \prime 2 } } { 4 } = 1
hyperbola
center at (0,0) ( 0,0 )
transverse axis is the xx ^ { \prime } -axis
vertices at (±4,0) ( \pm 4,0 )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions