Solved

Rotate the Axes So That the New Equation Contains No 5x26xy+5y28=05 x ^ { 2 } - 6 x y + 5 y ^ { 2 } - 8 = 0

Question 109

Multiple Choice

Rotate the axes so that the new equation contains no xy-term. Discuss the new equation.
- 5x26xy+5y28=05 x ^ { 2 } - 6 x y + 5 y ^ { 2 } - 8 = 0


A)
θ=45y2=4x\begin{array}{l}\theta=45^{\circ} \\y^{2}=-4 x^{\prime}\end{array}
parabola
vertex at (0,0) (0,0)
focus at (1,0) (-1,0)

B)
θ=45\theta=45^{\circ}
x24y2=1\frac{x^{\prime 2}}{4}-y^{\prime 2}=1
hyperbola
center at (0,0) (0,0)
transverse axis is the x x^{\prime} -axis
vertices at (±2,0) (\pm 2,0)

C)
θ=45x2=4y parabola  vertex at (0,0)  focus at (0,1) \begin{array}{l}\theta=45^{\circ} \\x^{\prime 2}=-4 y^{\prime} \\\text { parabola } \\\text { vertex at }(0,0) \\\text { focus at }(0,-1) \end{array}

D)
θ=45x24+y2=1\begin{array}{l}\theta=45^{\circ} \\\frac{x^{\prime 2}}{4}+y^{\prime 2}=1\end{array}
ellipse
center at (0,0) (0,0)
major axis is the x x^{\prime} -axis
vertices at (±2,0) (\pm 2,0)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions