Solved

Transform the Polar Equation to an Equation in Rectangular Coordinates r=6sinθr = 6 \sin \theta

Question 28

Multiple Choice

Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.
- r=6sinθr = 6 \sin \theta
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r = 6 \sin \theta    A)      x^{2}+(y-3) ^{2}=9 \text {; circle, radius } 3   center at   (0,3)    in rectangular coordinates  B)      (x+3) ^{2}+y^{2}=9  ; circle, radius 3 center at   (-3,0)    in rectangular coordinates    C)      (x-3) ^{2}+y^{2}=9 \text {; circle, radius } 3   center at   (3,0)    in rectangular coordinates    D)      x^{2}+(y+3) ^{2}=9 \text {; circle, radius } 3 \text {, }   center at   (0,-3)    in rectangular coordinates    ( x - 3 )  ^ { 2 } + y ^ { 2 } = 9 ;  circle, radius 3  \quad \quad \quad \quad x ^ { 2 } + ( y + 3 )  ^ { 2 } = 9 ; circle, radius 3 , center at  ( 3,0 )   in rectangular coordinates \quad \quad \quad   center at  ( 0 , - 3 )   in rectangular coordinates


A)
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r = 6 \sin \theta    A)      x^{2}+(y-3) ^{2}=9 \text {; circle, radius } 3   center at   (0,3)    in rectangular coordinates  B)      (x+3) ^{2}+y^{2}=9  ; circle, radius 3 center at   (-3,0)    in rectangular coordinates    C)      (x-3) ^{2}+y^{2}=9 \text {; circle, radius } 3   center at   (3,0)    in rectangular coordinates    D)      x^{2}+(y+3) ^{2}=9 \text {; circle, radius } 3 \text {, }   center at   (0,-3)    in rectangular coordinates    ( x - 3 )  ^ { 2 } + y ^ { 2 } = 9 ;  circle, radius 3  \quad \quad \quad \quad x ^ { 2 } + ( y + 3 )  ^ { 2 } = 9 ; circle, radius 3 , center at  ( 3,0 )   in rectangular coordinates \quad \quad \quad   center at  ( 0 , - 3 )   in rectangular coordinates
x2+(y3) 2=9; circle, radius 3x^{2}+(y-3) ^{2}=9 \text {; circle, radius } 3
center at (0,3) (0,3) in rectangular coordinates
B)
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r = 6 \sin \theta    A)      x^{2}+(y-3) ^{2}=9 \text {; circle, radius } 3   center at   (0,3)    in rectangular coordinates  B)      (x+3) ^{2}+y^{2}=9  ; circle, radius 3 center at   (-3,0)    in rectangular coordinates    C)      (x-3) ^{2}+y^{2}=9 \text {; circle, radius } 3   center at   (3,0)    in rectangular coordinates    D)      x^{2}+(y+3) ^{2}=9 \text {; circle, radius } 3 \text {, }   center at   (0,-3)    in rectangular coordinates    ( x - 3 )  ^ { 2 } + y ^ { 2 } = 9 ;  circle, radius 3  \quad \quad \quad \quad x ^ { 2 } + ( y + 3 )  ^ { 2 } = 9 ; circle, radius 3 , center at  ( 3,0 )   in rectangular coordinates \quad \quad \quad   center at  ( 0 , - 3 )   in rectangular coordinates
(x+3) 2+y2=9 (x+3) ^{2}+y^{2}=9 ; circle, radius 3 center at (3,0) (-3,0) in rectangular coordinates


C)
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r = 6 \sin \theta    A)      x^{2}+(y-3) ^{2}=9 \text {; circle, radius } 3   center at   (0,3)    in rectangular coordinates  B)      (x+3) ^{2}+y^{2}=9  ; circle, radius 3 center at   (-3,0)    in rectangular coordinates    C)      (x-3) ^{2}+y^{2}=9 \text {; circle, radius } 3   center at   (3,0)    in rectangular coordinates    D)      x^{2}+(y+3) ^{2}=9 \text {; circle, radius } 3 \text {, }   center at   (0,-3)    in rectangular coordinates    ( x - 3 )  ^ { 2 } + y ^ { 2 } = 9 ;  circle, radius 3  \quad \quad \quad \quad x ^ { 2 } + ( y + 3 )  ^ { 2 } = 9 ; circle, radius 3 , center at  ( 3,0 )   in rectangular coordinates \quad \quad \quad   center at  ( 0 , - 3 )   in rectangular coordinates
(x3) 2+y2=9; circle, radius 3(x-3) ^{2}+y^{2}=9 \text {; circle, radius } 3
center at (3,0) (3,0) in rectangular coordinates



D)
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r = 6 \sin \theta    A)      x^{2}+(y-3) ^{2}=9 \text {; circle, radius } 3   center at   (0,3)    in rectangular coordinates  B)      (x+3) ^{2}+y^{2}=9  ; circle, radius 3 center at   (-3,0)    in rectangular coordinates    C)      (x-3) ^{2}+y^{2}=9 \text {; circle, radius } 3   center at   (3,0)    in rectangular coordinates    D)      x^{2}+(y+3) ^{2}=9 \text {; circle, radius } 3 \text {, }   center at   (0,-3)    in rectangular coordinates    ( x - 3 )  ^ { 2 } + y ^ { 2 } = 9 ;  circle, radius 3  \quad \quad \quad \quad x ^ { 2 } + ( y + 3 )  ^ { 2 } = 9 ; circle, radius 3 , center at  ( 3,0 )   in rectangular coordinates \quad \quad \quad   center at  ( 0 , - 3 )   in rectangular coordinates
x2+(y+3) 2=9; circle, radius 3x^{2}+(y+3) ^{2}=9 \text {; circle, radius } 3 \text {, }
center at (0,3) (0,-3) in rectangular coordinates

(x3) 2+y2=9;( x - 3 ) ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3 \quad \quad \quad \quad x2+(y+3) 2=9x ^ { 2 } + ( y + 3 ) ^ { 2 } = 9 ; circle, radius 3 ,
center at (3,0) ( 3,0 ) in rectangular coordinates \quad \quad \quad center at (0,3) ( 0 , - 3 ) in rectangular coordinates

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions