Solved

Transform the Polar Equation to an Equation in Rectangular Coordinates r=6cosθr=6 \cos \theta

Question 96

Multiple Choice

Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.
- r=6cosθr=6 \cos \theta
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r=6 \cos \theta    A)     ( x - 3 )  ^ { 2 } + y ^ { 2 } = 9 ;  circle, radius 3 , center at  ( 3,0 )   in rectangular coordinates  B)      x ^ { 2 } + ( y + 3 )  ^ { 2 } = 9 ;  circle, radius 3, center at  ( 0 , - 3 )   in rectangular coordinates  C)     ( x + 3 )  ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3 center at  ( - 3,0 )   in rectangular coordinates  D)      x ^ { 2 } + ( y - 3 )  ^ { 2 } = 9 \text {; circle, radius } 3 \text {, }   center at  ( 0,3 )   in rectangular coordinates    ( x + 3 )  ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3 \quad \quad \quad \quad \quad x ^ { 2 } + ( y - 3 )  ^ { 2 } = 9 \text {; circle, radius } 3 \text {, }  center at  ( - 3,0 )   in rectangular coordinates \quad \quad \quad  center at  ( 0,3 )   in rectangular coordinates


A)
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r=6 \cos \theta    A)     ( x - 3 )  ^ { 2 } + y ^ { 2 } = 9 ;  circle, radius 3 , center at  ( 3,0 )   in rectangular coordinates  B)      x ^ { 2 } + ( y + 3 )  ^ { 2 } = 9 ;  circle, radius 3, center at  ( 0 , - 3 )   in rectangular coordinates  C)     ( x + 3 )  ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3 center at  ( - 3,0 )   in rectangular coordinates  D)      x ^ { 2 } + ( y - 3 )  ^ { 2 } = 9 \text {; circle, radius } 3 \text {, }   center at  ( 0,3 )   in rectangular coordinates    ( x + 3 )  ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3 \quad \quad \quad \quad \quad x ^ { 2 } + ( y - 3 )  ^ { 2 } = 9 \text {; circle, radius } 3 \text {, }  center at  ( - 3,0 )   in rectangular coordinates \quad \quad \quad  center at  ( 0,3 )   in rectangular coordinates
(x3) 2+y2=9;( x - 3 ) ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3 ,
center at (3,0) ( 3,0 ) in rectangular coordinates

B)
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r=6 \cos \theta    A)     ( x - 3 )  ^ { 2 } + y ^ { 2 } = 9 ;  circle, radius 3 , center at  ( 3,0 )   in rectangular coordinates  B)      x ^ { 2 } + ( y + 3 )  ^ { 2 } = 9 ;  circle, radius 3, center at  ( 0 , - 3 )   in rectangular coordinates  C)     ( x + 3 )  ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3 center at  ( - 3,0 )   in rectangular coordinates  D)      x ^ { 2 } + ( y - 3 )  ^ { 2 } = 9 \text {; circle, radius } 3 \text {, }   center at  ( 0,3 )   in rectangular coordinates    ( x + 3 )  ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3 \quad \quad \quad \quad \quad x ^ { 2 } + ( y - 3 )  ^ { 2 } = 9 \text {; circle, radius } 3 \text {, }  center at  ( - 3,0 )   in rectangular coordinates \quad \quad \quad  center at  ( 0,3 )   in rectangular coordinates

x2+(y+3) 2=9;x ^ { 2 } + ( y + 3 ) ^ { 2 } = 9 ; circle, radius 3,
center at (0,3) ( 0 , - 3 ) in rectangular coordinates

C)
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r=6 \cos \theta    A)     ( x - 3 )  ^ { 2 } + y ^ { 2 } = 9 ;  circle, radius 3 , center at  ( 3,0 )   in rectangular coordinates  B)      x ^ { 2 } + ( y + 3 )  ^ { 2 } = 9 ;  circle, radius 3, center at  ( 0 , - 3 )   in rectangular coordinates  C)     ( x + 3 )  ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3 center at  ( - 3,0 )   in rectangular coordinates  D)      x ^ { 2 } + ( y - 3 )  ^ { 2 } = 9 \text {; circle, radius } 3 \text {, }   center at  ( 0,3 )   in rectangular coordinates    ( x + 3 )  ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3 \quad \quad \quad \quad \quad x ^ { 2 } + ( y - 3 )  ^ { 2 } = 9 \text {; circle, radius } 3 \text {, }  center at  ( - 3,0 )   in rectangular coordinates \quad \quad \quad  center at  ( 0,3 )   in rectangular coordinates
(x+3) 2+y2=9( x + 3 ) ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3
center at (3,0) ( - 3,0 ) in rectangular coordinates

D)
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r=6 \cos \theta    A)     ( x - 3 )  ^ { 2 } + y ^ { 2 } = 9 ;  circle, radius 3 , center at  ( 3,0 )   in rectangular coordinates  B)      x ^ { 2 } + ( y + 3 )  ^ { 2 } = 9 ;  circle, radius 3, center at  ( 0 , - 3 )   in rectangular coordinates  C)     ( x + 3 )  ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3 center at  ( - 3,0 )   in rectangular coordinates  D)      x ^ { 2 } + ( y - 3 )  ^ { 2 } = 9 \text {; circle, radius } 3 \text {, }   center at  ( 0,3 )   in rectangular coordinates    ( x + 3 )  ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3 \quad \quad \quad \quad \quad x ^ { 2 } + ( y - 3 )  ^ { 2 } = 9 \text {; circle, radius } 3 \text {, }  center at  ( - 3,0 )   in rectangular coordinates \quad \quad \quad  center at  ( 0,3 )   in rectangular coordinates

x2+(y3) 2=9; circle, radius 3x ^ { 2 } + ( y - 3 ) ^ { 2 } = 9 \text {; circle, radius } 3 \text {, }

center at (0,3) ( 0,3 ) in rectangular coordinates

(x+3) 2+y2=9( x + 3 ) ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3 \quad \quad \quad \quad \quad x2+(y3) 2=9; circle, radius 3x ^ { 2 } + ( y - 3 ) ^ { 2 } = 9 \text {; circle, radius } 3 \text {, }
center at (3,0) ( - 3,0 ) in rectangular coordinates \quad \quad \quad center at (0,3) ( 0,3 ) in rectangular coordinates

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions