Solved

Solve the Problem v=5255i+2655j\mathbf { v } = \frac { 52 } { 5 } \sqrt { 5 } \mathbf { i } + \frac { 26 } { 5 } \sqrt { 5 } \mathbf { j } \quad

Question 58

Multiple Choice

Solve the problem.
-Find a vector v whose magnitude is 26 and whose component in the i direction is twice the component in the j direction.


A) v=5255i+2655j\mathbf { v } = \frac { 52 } { 5 } \sqrt { 5 } \mathbf { i } + \frac { 26 } { 5 } \sqrt { 5 } \mathbf { j } \quad or v=5255i2655j\quad \mathbf { v } = - \frac { 52 } { 5 } \sqrt { 5 } \mathbf { i } - \frac { 26 } { 5 } \sqrt { 5 } \mathrm { j }
B) v=111010i331010j\mathbf { v } = \frac { 11 } { 10 } \sqrt { 10 } \mathbf { i } - \frac { 33 } { 10 } \sqrt { 10 } \mathbf { j } \quad or v=111010i+331010j\quad \mathbf { v } = - \frac { 11 } { 10 } \sqrt { 10 } \mathbf { i } + \frac { 33 } { 10 } \sqrt { 10 } \mathbf { j }
C) v=331010i+111010j\mathbf { v } = - \frac { 33 } { 10 } \sqrt { 10 } \mathbf { i } + \frac { 11 } { 10 } \sqrt { 10 } \mathbf { j } \quad or v=331010i111010j\quad \mathbf { v } = \frac { 33 } { 10 } \sqrt { 10 } \mathbf { i } - \frac { 11 } { 10 } \sqrt { 10 } \mathbf { j }
D) v=111010i+331010j\mathbf { v } = \frac { 11 } { 10 } \sqrt { 10 } \mathbf { i } + \frac { 33 } { 10 } \sqrt { 10 } \mathbf { j } \quad or v=111010i331010j\quad \mathbf { v } = - \frac { 11 } { 10 } \sqrt { 10 } \mathbf { i } - \frac { 33 } { 10 } \sqrt { 10 } \mathbf { j }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions