Solved

The Function F Is One-To-One f(x)=x2+1,x0f ( x ) = x ^ { 2 } + 1 , x \geq 0

Question 144

Multiple Choice

The function f is one-to-one. Find its inverse.
- f(x) =x2+1,x0f ( x ) = x ^ { 2 } + 1 , x \geq 0


A) f1(x) =x1,x0\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \sqrt { \mathrm { x } } - 1 , \mathrm { x } \geq 0
B) f1(x) =x1,x1f ^ { - 1 } ( x ) = \sqrt { x - 1 } , x \geq 1
C) f1(x) =x+1,x1\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \sqrt { \mathrm { x } + 1 } , \mathrm { x } \geq - 1
D) f1(x) =x1,x<0\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \sqrt { \mathrm { x } } - 1 , \mathrm { x } < 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions