Solved

Determine I) the Domain of the Function, Ii) the Range f(x)=3x1f ( x ) = \frac { 3 } { x - 1 }

Question 435

Multiple Choice

Determine i) the domain of the function, ii) the range of the function, iii) the domain of the inverse, and iv) the range of
the inverse.
- f(x) =3x1f ( x ) = \frac { 3 } { x - 1 }


A) f(x) :D={xx3},R={yy1}f ( x ) : D = \{ x \mid x \neq - 3 \} , R = \{ y \mid y \neq 1 \}
f1(x) :D={xx1},R={yy3}f ^ { - 1 } ( x ) : D = \{ x \mid x \neq 1 \} , R = \{ y \mid y \neq - 3 \}

B) f(x) f ( x ) : D is all real numbers, R={yy3R = \{ y | y \neq - 3 \rangle ; f1(x) :D={xxz3},R\mathrm { f } ^ { - 1 } ( \mathrm { x } ) : \mathrm { D } = \{ \mathrm { x } \mid \mathrm { x } z - 3 \} , \mathrm { R } is all real numbers

C) f(x) :D={xx1},R={y0}f ( x ) : D = \{ x \mid x \neq 1 \} , R = \{ y \neq 0 \} ; f1(x) :D={xx0},R={yy1}\mathrm { f } ^ { - 1 } ( \mathrm { x } ) : \mathrm { D } = \{ \mathrm { x } \mid \mathrm { x } \neq 0 \} , \mathrm { R } = \{ \mathrm { y } \mid \mathrm { y } \neq 1 \}

D) f(x) f ( x ) : D is all real numbers, RR is all real numbers; f1(x) \mathrm { f } ^ { - 1 } ( \mathrm { x } ) : D\mathrm { D } is all real numbers, R\mathrm { R } is all real numbers

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions