Solved

Determine I) the Domain of the Function, Ii) the Range f(x)=5+4xf ( x ) = \sqrt { 5 + 4 x }

Question 193

Multiple Choice

Determine i) the domain of the function, ii) the range of the function, iii) the domain of the inverse, and iv) the range of
the inverse.
- f(x) =5+4xf ( x ) = \sqrt { 5 + 4 x }


A)
f(x) :D={xx0},R={yy0{1(x) :D={xx0,R={yy54}\begin{array}{l}f(x) : D=\{x \mid x \leq 0\}, R=\{y|y \leq 0\rangle \\\left\{-1(x) : D=\left\{x|x \leq 0\rangle, R=\left\{y \mid y \leq-\frac{5}{4}\right\}\right.\right.\end{array}

B)
f(x) :D={xx54},R={yy0}f(x) : D=\left\{x \mid x \geq-\frac{5}{4}\right\}, R=\{y \mid y \geq 0\}
f1(x) :D \mathrm{f}^{-1}(\mathrm{x}) : \mathrm{D} is all real numbers, R={yy54} \mathrm{R}=\left\{\mathrm{y} \mid \mathrm{y} \geq-\frac{5}{4}\right\}

C)
f(x) :D={xx54},R={yy0}f1(x) :D={xx0},R={yy54}\begin{array}{c}f(x) : D=\left\{x \mid x \geq-\frac{5}{4}\right\}, R=\{y \mid y \geq 0\} \\f-1(x) : D=\{x \mid x \geq 0\}, R=\left\{y \mid y \geq-\frac{5}{4}\right\}\end{array}

D)
f(x) :D={xx54},R f(x) : D=\left\{x \mid x \geq-\frac{5}{4}\right\}, R is all real numbers; f1(x) :D f^{-1}(x) : D is all real numbers, R={yy54} R=\left\{y \mid y \geq-\frac{5}{4}\right\}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions